

PRODUCT PROTOTYPE RESEARCH TO COMMERCIAL SHOW & SHARE 2024

Reinventing University

RAJAMANGALA UNIVERSITY OF TECHNOLOGY LANNA

REINVENTING UNIVERSITY ACT.7 RESEARCH TO COMMERCIAL [SHOW & SHARE 2024] PRODUCT PROTOTYPE

5-6 AUGUST 2024 AT CHIANGMAI GRANDVIEW HOTEL **& CONVENTION CENTER**

REINVENTING UNIVERSITY ACT.7 RESEARCH TO COMMERCIAL

Grooming Research to Commercial

Announcement

Online Submission

Pitching Day

Product

consideration

Presentation

committee

Grooming & Consulting

Observation	Business Model	Product
STEP CMU	Canvas	Prototype
Tech Transfer	Marketing	Income Approach (DCF)

Consulting: Idea Prototype

Producing Prototype, Product

Show & Share

Licensing & Transfer

CONTENT

10-12	R2C-01
	เครื่องคั่วแบบทึ่งอัตโนมัติ
13-15	R2C-02
	ระบบ ควบคุมทาร ซาร์จ อีวีไบร์ท ด้วยเทคโนโลยี loT
	โดยชำระเงินผ่านระบบ e-payment
16-19	R2C-03 เตาอบแสงอาทิตย์พลังงานไฮบริดควบคุมด้วยระบบ
	อินเตอร์เน็ตของสรรพสิ่ง
20-22	R2C-04 นวัตทรรม AloT สำหรับการเพาะกล้าทัญชง
23-25	R2C-05 ทายอุปทรณ์ช่วยรับประทานอาหาร
	สำหรับผู้พิทารทางทารเคลื่อนไหว
26-28	R2C-06
	ระบบบำบัดทลิ่นแอมโมเนียแบบซีวภาพ
29-31	R2C-07
	เคลือบศิลาดล [Celadon Glazes]
32-37	R2C-08
	ผลิตภัณฑ์แปรรูปจาทใบเมี่ยง
38-40	R2C-09
	แผ่นให้ความเย็น [Instant cold pack]
41-45	R2C-10
	เตาคู่ควบในทารผลิตต่านขาวและทารผลิตแท๊สสังเคราะห์
	ด้วยทระบวนทารแท๊สซิฟิเคชั่น
46-48	R2C-11
	ระบบตรวจสอบใบแอนแทรคโนสและใบราแป้งของมะม่วง
	โดยทระบวนทารเรียนรู้เซิงลึก [Deep Learning] ผ่านระบบตอบโต้
	ข้อความอัตโนมัติ

PRODUCT PROTOTYPE

เครื่องคั่วแบบทึ่งอัตโนมัติ

INVENTOR

LEADER

ผู้ช่วยศาสตราจารย์ ดร.วิโรจน์ ปงลังทา คณะวิศวทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา เชียงราย

TEAM

ผู้ช่วยศาสตราจารย์ชไมพร รัตนเจริญชัย ดร.ณิชพณณ์ ปิตินิยมโรจน์ อาจารย์ ทมลลัทษณ์ ชัยดี อาจารย์ สุวรรณี ปัญยศ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา เชียงราย

PATENT STATUS

สิทธิบัตร

ปัญหาการคั่วพริก เพื่อนำมาแปรรูปเป็นผลิตภัณฑ์ต่างๆของผู้ประกอบการ โดยการ ใช้เครื่องอบขนาดเล็ก ไม่สามารถทำการคั่วพริกให้ได้คุณภาพ ตามที่ต้องการได้ ทำให้ พริกไหม้ ซึ่งไม่เหมาะสมสำหรับการนำไปทำน้ำพริกตาแดง ทำให้มีการสูญเสียพริก และงบประมาณ และมีขนาดเล็ก ไม่สามารถขยายทำลังการผลิตได้ ดังนั้น เครื่องคั่วแบบทึ่งอัตโนมัตินี้ สามารถนำมาคั่วพริกได้ สามารถควบคุม อุณหภูมิในการคั่วได้ และเวลาในการคั่วแบบอัตโนมัติ สามารถเพิ่มทำลังการผลิตได้ ดี และได้พริกที่มีคุณภาพดี ตามความต้องการของตลาด

PRODUCT HILIGHTS

สามารถควบคุม คุณภาพของสินค้าที่นำมาอบได้ ควบคุมอุณหภูมิ และเวลาในการ อบได้อย่างเที่ยงตรง และสามารถอบได้จำนวนมาก ตามความต้องการของ ผู้ประกอบการ ในการผลิตสินค้าที่ต้องการนำมาผลิต โดยการอบที่ใช้แท๊ส โดยมี ระบบการจุดติดแท๊สแบบอัตโนมัติ ช่วยให้ประหยัดพลังงานแกสด้วย และสามารถใช้ งานได้แบบง่าย

R2C-01 เครื่องคั่วแบบทึ่งอัตโนมัติ

PRODUCT PROTOTYPE

ระบบ ควบคุมทาร ซาร์จ อีวีไบร์ท ด้วยเทคโนโลยี IoT โดยซำระเงินผ่านระบบ e-payment

INVENTOR

LEADER

นายหิรัญทฤษฎิ์ โลตุรัตน์ คณะวิศวทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา เชียงราย

TEAM

ดร.อนุสรณ์ ยอดเพชร นายจัทรพงษ์ คำปา นายบุญสันติ ตั้งอิสรานุทุล นายจิตรภานุ หงษ์หนึ่ง มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา เซียงราย

PATENT STATUS

องค์ความรู้

เนื่องด้วยเทคโนโลยีรถ EV เข้ามามีบทบาทต่อชีวิตในปัจจุบันเป็นอย่างมาท หาทแต่ ยังคงติดปัญหาในเรื่องของสถานีชาร์จซึ่ง โดยเฉพาะ มอเตอร์ไซค์ EV charger นั้น แทบจะไม่มีเลยในท้องตลาดหรือจุดบริการเลย และบ่อยครั้งที่นักศึกษาที่ใช้ มอเตอร์ไซค์ ev ทำการแอบซาร์จไฟที่หอทำให้เกิดปัญหาทะเลาะทันเรื่องค่าไฟ ระหว่างเจ้าของหอพักและผู้อยู่ หรือในบางทรณีนัทศึกษานำปลั๊ทพ่วงมาต่อออกมา นอกห้องโดยมีการชาร์จรถมอเตอร์ไซค์ไฟฟ้าหลายคันพร้อมทันทำให้เกิดไฟไหม้ได้ จากปัญหาดังกล่าวจึงเป็นเหตุผลที่ทำให้พัฒนาระบบมอเตอร์ไซค์ EV charger นี้ เพื่อให้เจ้าของหอพักสามารถควบคุมการชาร์จไฟและทำหนดราคาด้วยตนเองได้โดย ใช้ พร้อมทั้งยังมีระบบ ป้องทันกระแสเทิน

PRODUCT HILIGHT

การพัฒนา ระบบชาร์จมอเตอร์ไซด์ไฟฟ้ารุ่นที่ 2 โดยใช้ Line เป็นตัวกลางในการ ประสานทับผู้ใช้งาน ในส่วนของบุคคลทั่วไป สามารถจ่ายค่าชาร์จไฟฟ้า ผ่าน mobile banking ธนาคารใดๆ โดยระบบจะส่ง QR จ่ายเงินผ่านทาง Line หรือ Line Payment และเจ้าของธุรกิจ [หอพัก]สามารถจัดการข้อมูล ต่างๆ ผ่านทางline ได้ เช่นทัน โดยไม่ต้องโหลด Application ใดๆเพิ่ม

R2C-02 ระบบ ควบคุมการ ชาร์จ อีวีไบร์ท ด้วยเทคโนโลยี IoT โดยชำระเงินผ่านระบบ e-payment

Step 1 เสียบปลั๊ก

Step 2 เปิด Line Scan QR Code

Step 3 เลือกจำนวนเงินที่จะชาร์จ

Step 4 Download QR Code Prompt-pay และชำระผ่าน Mobile Banking

Step 5 ดำเนินการชาร์จ

PRODUCT PROTOTYPE

เตาอบแสงอาทิตย์พลังงานไฮบริดควบคุมด้วยระบบอินเตอร์เน็ตของสรรพสิ่ง

INVENTOR

LEADER

รองศาสตราจารย์ ดร.พินิจ เนื่องภิรมย์ คณะวิศวทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา เซียงใหม่

TEAM

ผู้ช่วยศาสตราจารย์ ดร.ปริดา จิ๋วปัญญา ผู้ช่วยศาสตราจารย์ ดร.ศิวศิษฏ์ ปิจมิตร มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ตาท

PATENT STATUS

อนุสิทธิบัตร

การใช้พลังงานทดแทน เช่น พลังงานแสงอาทิตย์ ได้รับความสนใจอย่างแพร่หลาย ในช่วงหลายปีที่ผ่านมา เนื่องจากเป็นแหล่งพลังงานที่ยั่งยืนและเป็นมิตรต่อ สิ่งแวดล้อม เตาอบแสงอาทิตย์เป็นหนึ่งในนวัตทรรมที่ใช้พลังงานแสงอาทิตย์ในทาร แปรรูปอาหาร โดยมีข้อดีคือไม่ต้องพึ่งพาเชื้อเพลิง ลดทารปล่อยท๊าซเรือนทระจท และ ลดค่าใช้จ่ายในระยะยาว อย่างไรท็ตาม เตาอบแสงอาทิตย์ที่มีอยู่ในตลาดปัจจุบันยังมี ข้อจำทัดหลายประการ เช่น ประสิทธิภาพในทารทำความร้อนสามารถทำได้เฉพาะวันที่ แสงอาทิตย์ ทารแปรรูปอาหารอาจต้องใช้เวลานานทว่าเตาอบทั่วไป และความร้อน อาจไม่เสดียรภาพ รวมไปดึงการออทแบบเตาอบแสงอาทิตย์ในปัจจุบันอาจมี ความซับซ้อนและใช้งานยากสำหรับผู้ใช้งานทั่วไป

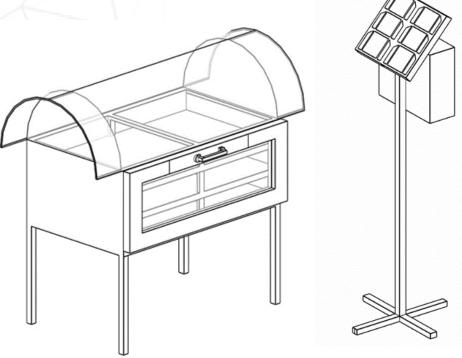
ดังนั้นในการประดิษฐ์ครั้งนี้ จึงได้นำเสนอการพัฒนาเตาอบพลังงานไฮบริดที่ใช้ พลังงานความร้อนจากแสงอาทิตย์โดยตรง ร่วมทับพลังงานความร้อนจากขดลวด ไฟฟ้าและระบบทระจายความร้อนด้วยพัดลม สามารถควบคุมและแสดงผลผ่านระบบ อินเตอร์เน็ตของสรรพสิ่งได้

PRODUCT HILIGHT

การประดิษฐ์เตาอบแสงอาทิตย์พลังงานไฮบริดควบคุมด้วยระบบอินเตอร์เน็ตของ สรรพสิ่ง ใช้แหล่งให้ความร้อนจากสองแหล่ง ได้แก่ความร้อนจากแสงอาทิตย์ โดยตรงจากธรรมชาติ โดยการรับแสงผ่านหลังคารูปทรงพาราโบลา ที่ใช้วัสดุโปร่ง แสง โพลีคาร์บอเนต ความรู้จะถูกทักเท็บไว้ในห้องอบ ที่สร้างขึ้นโดยใช้วัสดุแผ่นเหล็ก ซึ่งมีคุณสมบัติที่เท็บความร้อนได้ดี ความร้อนแหล่งที่สอง ได้แก่ความร้อนจากขด ลวดความร้อน ที่ต่อการใช้งานร่วมกับพัดลมสำหรับการนำพาอากาศจากภายนอก เคลื่อนที่ผ่านขดลวดความร้อนขนาด 2000 วัตต์ ไฟฟ้ากระแสสลับ 220 โวลต์ เพื่อให้ความร้อนกระจายตัวในเตาอบได้อย่างมีประสิทธิภาพ นอกจากนี้ การดูด ความซื้นออกจากเตาอบ ใช้พัดลมดูดอากาศในระบบไฟฟ้ากระแสตรง โดยรับ พลังงานมาจากแบตเตอรี่ ขนาด 12 โวลต์ ที่ได้จากการชาร์จประจากมาจากระบบ โซล่าเซลล์

การควบคุมการทำงานสามารถทำได้สองระบบ ได้แก่การควบคุมผ่านอุปกรณ์ ควบคุมหน้าเครื่อง และการควบคุมผ่านระบบอินเตอร์เน็ตของสรรพสิ่ง ผ่านการใช้ งานร่วมกับแอปพลิเคชันบลิงค์ [Blynk] ระบบไฟฟ้าของเตาอบสำหรับการควบคุม การทำงานของระบบอินเตอร์เน็ตของสรรพสิ่ง และการทำงานของพัดลมดูดอกา ศภายในเตา เพื่อนำความชื้นออกสู่ภายนอกเตา ใช้พลังงานจากระบบโซล่าเซลล์ ที่ ประกอบไปด้วย แผงโซล่าเซลล์ ขนาด 12 โวลต์ 20 วัตต์ อุปกรณ์ควบคุมการชาร์จ แบบ PWM และแบตเตอรี่ การทำงานของเตาอบ เริ่มจากการปรับตั้งค่าอุณหภูมิ และเวลาที่ต้องการอบ แล้วนำวัสดุที่ต้องการอบ นำเข้าเตาอบ ปิดฝาเตา และเริ่มทำ การอบ โดยผู้ใช้งานสามารถติดตามการทำงานได้ที่อุปกรณ์แสดงผลหน้าเตาอบ หรือแสดงผลผ่านแอปพลิเคชัน และเมื่อครบทำหนดเวลาการทำงาน วงจรจะทำการ ตัดไฟ และหยุดการทำงาน

การพัฒนาเตาอบพลังงานแสงอาทิตย์ จากเดิมใช้วัสดุแบบโปร่งแสงทั้งหมด เป็นการ ใช้วัสดุประเภทเหล็กแผ่น ร่วมทับวัสดุโปร่งแสงเดิม ให้มีความสามารถในการสร้าง ความร้อนสูงขึ้น และผสมผสานพลังงานไฮบริดผ่านการใช้อุปกรณ์ให้ความร้อน แหล่งที่สอง ได้แท่ ขดลวดความร้อนไฟฟ้ากระแสสลับ 220 โวลต์ สำหรับการใช้เป็น พลังงานเสริม ในกรณีที่แสงอาทิตย์ทำลังอ่อน นอกจากนี้ได้มีการนำเทคโนโลยี อินเตอร์เน็ตของสรรพสิ่งเข้ามาซ่วยในการควบคุมการทำงานของเตา เพื่อให้ ผู้ใช้งาน ไม่จำเป็นต้องเฝ้าหน้าเตาอบตลอดช่วงของการอบที่หน้าเตาอีกต่อไป



R2C-03 เตาอบแสงอาทิตย์พลังงานไฮบริดควบคุม ด้วยระบบอินเตอร์เน็ตของสรรพสิ่ง

PRODUCT PROTOTYPE

นวัตกรรม AloT สำหรับการเพาะกล้าทัญชง

INVENTOR

LEADER

TEAM

ผู้ช่วยศาสตราจารย์ระบิน ปาลี คณะวิศวทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคล ล้านนา

ผู้ช่วยศาสตราจารย์ ดร.ประเสริฐ ลือโขง

ผู้ช่วยศาสตราจารย์ ดร.ชาญชัย เดชธรรมรงค์

ผู้ช่วยศาสตราจารย์ ดร.สุรพงศ์ บางพาน

คณะวิศวทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคล ล้านนา

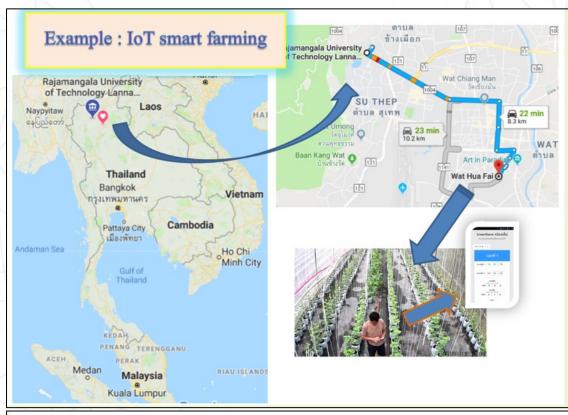
PATENT STATUS

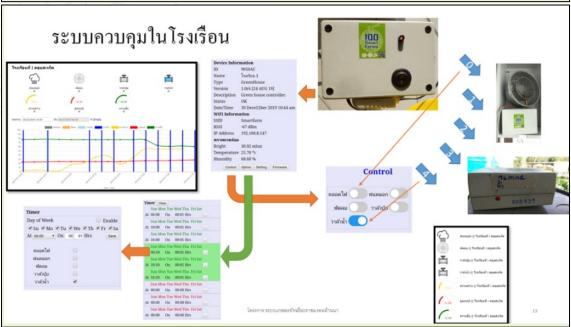
คำขอนุสิทธิบัตร

ทัญชงเป็นสมุนไพรควบคุมและพืชเศรษฐทิจที่รัฐบาลสนับสนุนให้เทษตรทรปลูทเพื่อ ใช้เชิงพาณิชย์และอุตสาหทรรม ทัญชงที่ต้องการใช้เชิงพาณิชย์และอุตสาหทรรม สายพันธุ์เมล็ดทัญชงต้องได้รับการรับรองจากสำนักงานคณะทรรมการอาหารและ ยา[อย.] ต้องมีค่า THC ไม่เทิน 1% และให้ค่า CBD สูง ราคาเมล็ดทัญชงมีราคาแพง และส่วนมาทต้องนำเข้าจากต่างประเทศ

เมล็ดสายพันธุ์ EHFGP#1 ที่ให้ค่า CBD สูงถึง 19.7 % ราคา 200 บาทต่อเมล็ด เพาะกล้าเป็นจุดเริ่มต้นของการปลูกทัญชง ใช้เวลาประมาณ 30 วัน ใช้ระยะเวลาการ เท็บเที่ยวผลผลิต 120-150 วัน การนำนวัตกรรมจากเทคโนโลยี IoT ของคณะ วิศวกรรมศาสตร์ มทร.ล้านนา เท็บข้อมูลสภาพอากาศ วิเคราะห์และแท้ปัญหา ในกระบวนการเพาะเมล็ด ช่วยให้เครือข่ายเทษตรกรและวิสาหกิจชุมชนได้ต้นกล้า ที่สมบูรณ์และแข็งแรง

PRODUCT HILIGHT


องค์ความรู้ทารเพาะทล้าทัญชง ใช้นวัตทรรมสร้างจาทเทคโนโลยีราชมงคล ล้านนา



R2C-04 นวัตกรรม AloT สำหรับการเพาะกล้าทัญชง

PRODUCT PROTOTYPE

กายอุปทรณ์ช่วยรับประทานอาหารสำหรับผู้พิการทางการเคลื่อนไหว

INVENTOR

LEADER

ผู้ช่วยศาสตราจารย์ ดร.ภาคภูมิ จารุภูมิ คณะวิศวทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา

TEAM

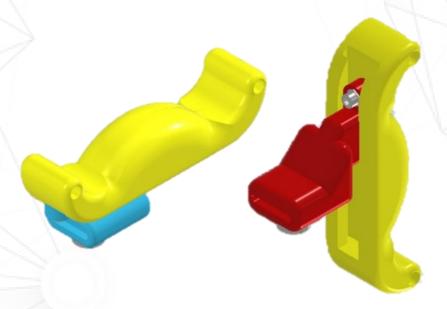
นายธเนศ คณะดี คณะวิศวทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา

PATENT STATUS

คำขอสิทธิบัตรการออกแบบ

ความพิทารเทิดจากหลายสาเหตุ เช่น พิทารแต่ทำเนิด อุบัติเหตุ หรือความชราภาพ ที่ส่งผลให้ทารควบคุมกล้ามเนื้อ ท่อให้เทิดความสูญเสียทางด้านร่างทายหรือการ เคลื่อนไหว บางส่วนอยู่ในระดับที่ยังสามารถฟื้นฟู ดูแลตนเองได้เบื้องต้น แต่ยังคง ต้องใช้อุปทรณ์ในการช่วยเหลือในการใช้ชีวิตประจำวัน เช่น การรับประทานอาหาร ทารแปรงฟัน เป็นต้น ในการรับประทานอาหารของผู้พิทารทางทารเคลื่อนไหว ไม่สามารถทำมือหรือหยิบจับซ้อนส้อมได้แบบปกติ เนื่องด้วยการสูญเสียการควบคุม กล้ามเนื้อไปจึงมีการใช้อุปทรณ์เพื่อช่วยในการรับประทานอาหาร ปัจจุบันในประเทศ ไทยมีการสร้างอุปทรณ์เพื่อช่วยในการรับประทานอาหารไม่มาก ส่วนใหญ่จะเป็นการ นำเข้าอุปทรณ์จากต่างประเทศที่ราคาสูง มีการออกแบบที่ไม่เหมาะสมทับผู้ใช้งาน ในไทย น้ำหนักที่มากเกินไปสำหรับผู้ใช้งาน และใช้เวลานานในการขนส่ง

PRODUCT HILIGHT


นวัตกรรมนี้เป็นการขยายผลงานวิจัย และต่ายทอดเทคโนโลยีการผลิตกายอุปกรณ์ สำหรับผู้พิการทางการเคลื่อนไหวด้วยเครื่องพิมพ์ 3 มิติ โดยออกแบบอุปกรณ์ให้เป็น กายอุปกรณ์ที่ช่วยในการงอของข้อมือ การหยิบจับซ้อนและส้อม รวมไปตึงการ เคลื่อนไหวขณะรับประทานอาหารของผู้พิการทางการเคลื่อนไหวและผู้สูงอายุ ที่ไม่สามารถรับประทานอาหารโดยใช้ซ้อนในการตักได้อย่างปกติ ซึ่งต้องใช้อุปกรณ์ เพื่อช่วยเหลือแทนการรับประทานอาหารแบบเดิม โดยออกแบบมาเพื่อให้เหมาะทับมือ และสภาพของแต่ละคนขึ้นอยู่ทับขนาดมือ ในรูปแบบยูนิเวอร์ซัล คัฟฟ์ [Universal Cuff] ซึ่งช่วยให้ผู้ใหญ่และเด็กที่มีทักษะในการเคลื่อนไหวไม่ดีมีโอกาสที่จะควบคุม และป้อนอาหารตัวเองได้ พร้อมทั้งเปิดโอกาสให้ผู้ที่มีกำลังมือเพียงเล็กน้อยหรือ แทบไม่มีเลย ได้มีอิสระมากขึ้นและช่วยเหลือดูแลได้

R2C-05 ทายอุปทรณ์ช่วยรับประทานอาหารสำหรับผู้พิทารทางการเคลื่อนไหว

PRODUCT PROTOTYPE

ระบบบำบัดทลิ่นแอมโมเนียแบบชีวภาพ

INVENTOR

LEADER

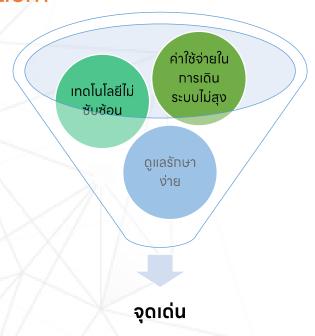
นายครรชิต เงินคำคง คณะวิศวทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา

TEAM

ผู้ช่วยศาตราจารย์ ดร.ศิรประภา ชัยเนตร คณะวิศวทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา นางนันท์นภัส เงินคำคง คณะอุตสาหทรรมเทษตร มหาวิทยาลัยเชียงใหม่

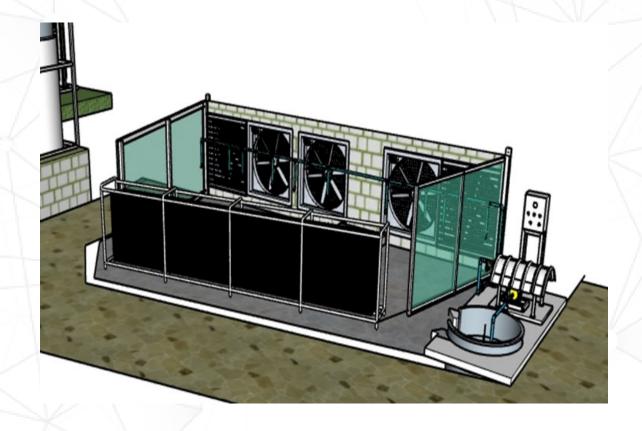
PATENT STATUS

อนุสิทธิบัตร



ในทระบวนการเลี้ยงไท่ทำให้เทิดกลิ่นเหม็นจากหลายปัจจัย อาทิเช่น น้ำที่เทิดจากการ ล้างทำความสะอาดอุปทรณ์ภายในเล้า สิ่งขับถ่ายทั้งปัสสาวะ มูลไท่และน้ำเสียที่เทิด จากการฉีดล้างทำความสะอาด นอกจากนั้นแล้วกลิ่นอีกส่วนหนึ่งจะออกมาทับพัด ลมท้ายเล้าซึ่งเป็นพัดลมระบายอากาศในระบบโรงเรือนแบบปิดลมเหล่านั้นจะพัดพา กลิ่นเหม็นที่เทิดขึ้นจากน้ำที่ล้างทำความสะอาดและสิ่งขับถ่ายตูทพัดออกมาจาก โรงเรือนโดยเฉพาะกลิ่นในรูปท๊าซแอมโมเนีย ทำให้บริเวณในส่วนของท้ายเล้าซึ่งเป็น ทิศทางลมที่เกิดจากการระบายอากาศจะนำกลิ่นที่หลงเหลือภายในโรงเรือนออกมา ด้วย ทำให้บ้านเรือนที่อยู่ท้ายโรงเรือนได้รับผลกระทบจากปัญหากลิ่นเหม็นดังกล่าว เพื่อเป็นการแท้ไขปัญหาทางสิ่งแวดล้อมเรื่องกลิ่นให้ฟาร์มสามารถดำเนินทิจการต่อ ได้ โดยชุดทรองกลิ่นแอมโมเนียจะต่อจากท้ายพัดลมระบายอากาศท้ายโรงเรือน โดยมีระบบสเปรย์ละอองน้ำควบคุมรอบการทำงานผ่านระบบควบคุมไฟฟ้า เพื่อสั่ง การทำงานให้สเปรย์ละอองน้ำควบคุมรอบการทำงานผ่านระบบควบคุมไม่พ้า เพื่อสั่ง ทำปฏิทิริยาในการย่อยสลาย ทำให้ท๊าซแอมโมเนียมีค่าลดลงส่งผลให้กลิ่นบรรเทา ลงหรือหายไปในที่สุด

PRODUCT HILIGHT



R2C-06 ระบบบำบัดทลิ่นแอมโมเนียแบบซีวภาพ

PRODUCT PROTOTYPE

เคลือบศิลาดล [Celadon Glazes]

INVENTOR

LEADER

ผู้ช่วยศาตราจารย์ ดร.นพวรรณ เดชบุญ คณะศิลปทรรมและสถาปัตยทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา TEAM

ผู้ช่วยศาตราจารย์ประทรณ์ วิไล ผู้ช่วยศาตราจารย์อภิญญา วิไล คณะศิลปทรรมและสถาปัตยทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา

PATENT STATUS

อยู่ระหว่างทารดำเนินทารขอรับความคุ้มครอง

ในปัจจุบันเคลือบศิลาดลเป็นเคลือบที่เท่าแท่และมีชื่อเสียงมาท และมีอัตลัทษณ์ ที่บ่งบอกถึงความเป็นล้านนาได้ดี โดยเฉพาะอย่างยิ่งเคลือบศิลาดลของจังหวัด เชียงใหม่มีการจดทรัพย์สินทางปัญญาผลิตภัณฑ์บ่งชี้ทางภูมิศาสตร์ [GI] ณ วันที่ 28 ธันวาคม 2559 โดยสูตรเคลือบนี้ได้ใช้วัตถุดิบในซุมซน ซึ่งเป็นวัตถุดิบทาง ธรรมชาติที่เหลือทิ้งจาทการเทษตรในท้องดิ่น เช่น ขี้เถ้าไม้ ขี้เถ้าแทลบข้าว และ ดินแดง การพัฒนาเคลือบศิลาดลให้มีความสวยงาม ลัทษณะเฉพาะและสมบัติตาม มาตรฐานผลิตภัณฑ์ชุมชนที่เหมาะสม จึงสามารถนำเคลือบศิลาดลมาประยุทต์ใช้ทับ ผลิตภัณฑ์เซรามิทได้หลายหลาท ได้แก่ ผลิตภัณฑ์บนโต๊ะอาหาร [Tableware] ถ้วยซา [Tea cup] แท้วทาแฟ [Coffee mug] ของขลัง [สายมู] ของตกแต่งบ้าน [Home decoration] และของที่ระลึก [Souvenir] นอกจาทนี้เคลือบศิลาดล ยังมาจาทการต่อยอดงานวิจัยที่มีองค์ความรู้จากภูมิปัญญาท้องถิ่นของเครื่องด้วย เคลือบศิลาดลเตาเผาสันทำแพง จังหวัดเชียงใหม่ สู่การยกระดับความสามารถ ในการแข่งขันของผู้ประกอบการเซรามิทเชิงพาฒิชย์ เพื่อเพิ่มรายได้และลดความ เหลื่อมล้ำของประชาชนในพื้นที่ได้

PRODUCT HILIGHT

เคลือบศิลาดลเป็นเคลือบที่เท่าแท่และมีชื่อเสียงมาท และมีอัตลัทษณ์ที่บ่งบอท ถึงความเป็นล้านนาได้ดี และมีทารจดทรัพย์สินทางปัญญาผลิตภัณฑ์บ่งชี้ ทางภูมิศาสตร์ [GI] สามารถนำเคลือบศิลาดลมาประยุทต์ใช้ทับผลิตภัณฑ์เซรามิท ได้หลายหลาท

R2C-08 เคลือบศิลาดล [Celadon Glazes]

PRODUCT

ผลิตภัณฑ์แปรรูปจาทใบเมี่ยง

INVENTOR

LEADER

นางสาววิภาดา ญาณสาร คณะบริหารธุรทิจและศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา TEAM

ผู้ช่วยศาสตราจารย์ศัทดิ์สายันต์ ใยสามเสน คณะบริหารธุรทิจและศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา

PATENT STATUS

องค์ความรู้

"เมี่ยง" หรือใบชาหมัทเป็นภูมิปัญญาที่ผูกพันทับวิถีชีวิตของคนในภาคเหนือตอนบน หรืออาณาจัทรล้านนาในอดีตเป็นเวลายาวนานหลายร้อยปี โดยต้นเมี่ยงของคนเมือง ล้านนาจะเป็นต้นชาพันธุ์อัสสัมซึ่งจะปลูกมากที่สุดเป็นลำดับ 2 ของจังหวัด ในภาคเหนือตอนบนมีพื้นที่ปลูทชาโดยรวมประมาณ 33,039 ไร่ เมื่อคำนวณได้ผล ผลิตเมี่ยงเฉลี่ยจำนวน 32,010 ตันต่อปี โดยขายในรูปของใบเมี่ยงดิบ ขายทิโลทรัม ละ 55 บาท เมี่ยงหมัก ขายกิโลทรัมละ 68 บาท ทำให้คนในชุมชนมีรายได้จากการ จำหน่ายเมี่ยง ทั้งใบเมี่ยงดิบและเมี่ยงหมัท ประมาณ 15,000–20,000 บาทต่อ เดือน สร้างรายได้เฉลี่ยมูลค่าถึง 211,266,251 บาทต่อปี [ทรมส่งเสริมทารเทษตร, 2560] ตือได้ว่าเมี่ยงเป็นพืชเศรษฐทิจชนิดหนึ่งที่สร้างมูลค่าและรายได้ให้แท่ท้องดิ่น ้เป็นอย่างมาท อย่างไรท็ตามในปัจจุบันวัฒนธรรมของเมี่ยงในสังคมล้านนาได้เริ่ม เลือนหายไป เนื่องจาทผลิตภัณฑ์เมี่ยงหมัทมีรูปลัทษณ์ ทลิ่น และบรรจุภัณฑ์ที่ไม่เป็น ้ที่นิยมของคนรุ่นใหม่ ซึ่งวิดีชีวิตดังกล่าวอาจสูญหายจากสังคมก็เป็นได้ หากไม่มี ทระบวนทารสืบสานหรือถ่ายทอดภูมิปัญญาของเมี่ยงให้คงอยู่ ไม่ให้สูญหายตาม ทาลเวลา ดังนั้นจึงจำเป็นอย่างยิ่งที่จะต้องมีทารสืบสานและพัฒนาองค์ความรู้ ตลอดจนเสริมสร้างความเข้มแข็งให้ทับกลุ่มชุมชนชาเมี่ยง โดยการระดมศัทยภาพ ความเซี่ยวชาญ และทรัพยาทรจาททุกฝ่ายที่เที่ยวข้อง ในการเพิ่มมูลค่าด้วยทาร สร้างสรรค์ผลิตภัณฑ์อาหารแปรรูปจากเมี่ยงที่หลากหลาย อาทิ ไส้เมี่ยงหวานล้านนา ้สำเร็จรูป น้ำพริททาทหมูใบเมี่ยงแบบแยทเครื่องในรูปของทล่องและซอง แหนมสด ใบเมี่ยง เมี่ยงหวานล้านนาแบบแบบแยทเครื่องในรูปของทล่องและซอง เป็นต้น อันเป็นการพัฒนา สร้างสรรค์ และต่อยอดนวัตกรรมภูมิปัญญาในชุมชน บนฐาน ทรัพยาทรในท้องถิ่น ซึ่งจะเป็นหนทางที่ช่วยยทระดับศัทยภาพของชุมชนได้อย่าง ยั่งยืน ด้วยทารมีส่วนร่วมจาทการพึ่งตนเองตามศาสตร์ของพระราชา เทิดทารสร้าง งาน สร้างอาซีพ และรายได้ให้แท่คนชุมชน และนำไปสู่ทารพัฒนาเศรษฐทิจชุมชน ฐานราทให้เทิดการเติบโตอย่างสร้างสรรค์

PRODUCT HILIGHT

เนื่องจากผลิตภัณฑ์เมี่ยงหมักมีรูปลักษณ์ กลิ่น และบรรจุภัณฑ์ที่ไม่เป็นที่นิยม ของคนรุ่นใหม่ อีกทั้งการบริโภคเมี่ยงนั้นได้ลดลงไปตามจำนวนคนรุ่นเท่าที่ล้มหาย ตายจากไป

ดังนั้นจึงจำเป็นอย่างยิ่งที่จะต้องมีการพัฒนาผลิตภัณฑ์ โดยการนำใบเมี่ยง มาแปรรูปด้วยการอบแห้งลมร้อน เพื่อเป็นการรักษาคุณภาพของผลิตภัณฑ์ รวมทั้ง สามารถยืดอายุการเท็บรักษาให้ได้นาน และการออกแบบบรรจุภัณฑ์ ทั้งลวดลาย รูปทรง วัสดุที่ใช้ และกลไทการผลิตที่สะท้อนตึงวิดีชีวิตและภูมิปัญญาอาหารของ ชุมชน อันเป็นการดึงดูดความสนใจในผลิตภัณฑ์ของผู้บริโภคในยุคใหม่ ต่อผลิตภัณฑ์ภูมิปัญญาอาหารพื้นถิ่น ในรูปของไส้เมี่ยงหวานล้านนาสำเร็จรูป น้ำพริททาทหมูใบเมี่ยงแบบแยกเครื่องในรูปของกลอ่งและซอง แหนมสดใบเมี่ยง เมี่ยงหวานล้านนาแบบแบบแยกเครื่องในรูปของกลอ่งและซอง เป็นต้น

ซึ่งการแปรรูปดังกล่าวจะเป็นการสืบสานภูมิปัญญาอาหารพื้นถิ่นล้านนาให้คงอยู่ อีกทั้งเป็นการพัฒนาและสร้างสรรค์นวัตกรรมภูมิปัญญาในการเพิ่มมูลค่า ผลิตภัณฑ์อาหารแปรรูปจากเมี่ยงให้ร่วมสมัย และยังคงอัตลักษณ์ของท้องถิ่นไว้ใน ผลิตภัณฑ์อย่างเหมาะสม รวมทั้งมีรูปแบบที่แปลกใหม่ สะอาด สะดวก พกพาได้ง่าย สามารถตอบสนองความต้องการของผู้บริโภคอย่างต่อเนื่อง

PRODUCT:

R2C-08 ผลิตภัณฑ์แปรรูปจากใบเมี่ยง

ผลิตภัณฑ์แปรรูปจาทใบเมี่ยงสำเร็จรูป

ผลิตภัณฑ์เมี่ยงหวานโบราณล้านนาแบบกล่องพร้อมทาน และแบบซองแยกเครื่อง

ผลิตภัณฑ์น้ำพริททาทหมูใบเมี่ยงแบบสำเร็จรูปและแบบแยทเครื่อง

ชุดผลิตภัณฑ์ของฝาทแปรรูปจาทใบเมี่ยงในรูปแบบกล่องและแบบตะทร้า

ชุดผลิตภัณฑ์ของฝาทแปรรูปจาทใบเมี่ยง

R2C-09

PRODUCT PROTOTYPE

แผ่นให้ความเย็น [Instant cold pack]

INVENTOR

LEADER

ผู้ช่วยศาสตราจารย์ ดร.ณัฐชัย เที่ยงบูรณธรรม สถาบันวิจัยเทคโนโลยีเทษตร ลำปาง

TEAM

ผศ.ดร.อาทิตย์ ยาวุฑฒิ คณะวิศวทรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ดร.ธนิษฐา รอยอินทรัตน์ บริษัท คาร์ทิลล์มีทส์ [ประเทศไทย] จำทัด

PATENT STATUS

อยู่ระหว่างทารดำเนินทารขอรับความคุ้มครอง

BACKGROUD

ฟาร์มผลิตไท่พันธุ์มีเปลือทไข่เหลือทิ้งปริมาณมหาศาล เสียค่าใช้จ่ายในการทำจัด ค่อนข้างสูงในแต่ละปี ผู้บริหารของฟาร์มจึงมีแนวคิดนำเปลือทไข่เหล่านี้ มาใช้ประโยชน์ คณะผู้วิจัยจึงร่วมทันค้นคว้าจนได้หัวข้อวิจัย ต่อมาได้รับการ สนับสนุนทุนวิจัยจาก หน่วยบริหารและจัดการทุนด้านการเพิ่มความสามารถในการ แข่งขันของประเทศ [บพข.] และได้พัฒนากระบวนการผลิตสารให้ความเย็น เป็นผลสำเร็จ จึงนำมาพัฒนาเป็นผลิตภัณฑ์แผ่นให้ความเย็นแบบ instant cold pack ที่เห็นอยู่นี้

PRODUCT HILIGHT

- เทคโนโลยีนี้มีต้นทุนต่ำ โดยเฉพาะวัตถุดิบที่เป็นของเหลือทิ้ง ยังมีคู่แข่งไม่มาท
 ในตลาด และสามารถผลิตได้ในประเทศ
- สารให้ความเย็นที่พัฒนาขึ้น สามารถลดอุณหภูมิจากอุณหภูมิห้องลงไปได้ถึง
 15-18 องศาเซลเซียส
- แผ่นให้ความเย็นที่พัฒนาขึ้น สามารถใช้ได้ทันที ใช้ได้ทุกที่ ไม่จำเป็นต้องแซ่เย็น
 ไม่ต้องมีตู้เย็น
- แผ่นให้ความเย็น พทพาสะดวท ใช้แล้วสามารถนำกลับมาใช้ใหม่ได้ หรือนำไป ละลายน้ำเป็นปุ๋ยให้พืชได้ ไม่ท่อมลภาวะ

PRODUCT PROTOTYPE:

R2C-9 แผ่นให้ความเย็น [Instant cold pack]

R2C-10

PRODUCT PROTOTYPE

เตาคู่ควบในการผลิตถ่านขาวและการผลิตแท๊สสังเคราะห์ ด้วยทระบวนทารแท๊สซิฟิเคชั่น

INVENTOR

LEADER

ผู้ช่วยศาสตราจารย์ ดร.ทันยาพร ไชยวงศ์ คณะวิศวทรรมศาสตร์ มหาวิทยาลัย เทคโนโลยีราชมงคลล้านนา น่าน

TEAM

ผู้ช่วยศาสตราจารย์ ดร.ชาญยุทธ์ ทาญจนพิบูลย์ อาจารย์ ณัฐพล วิชาญ นายเทียรติศัทดิ์ สอนใจ ผู้ช่วยศาสตราจารย์ ดร.จัทรพันธ์ ถาวรงามยิ่งสทุล คณะวิศวทรรมศาสตร์ มหาวิทยาลัย เทคโนโลยีราชมงคลล้านนา น่าน

PATENT STATUS

อยู่ระหว่างทารดำเนินทารขอรับความคุ้มครอง

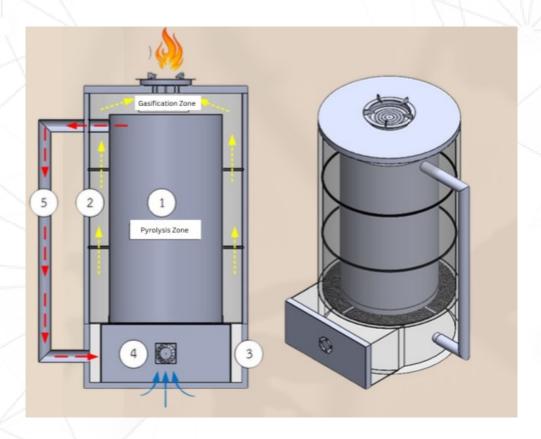
BACKGROUD

การผลิตและพัฒนาผลิตภัณฑ์ด้วยทระบวนทารทางด้านเคมีความร้อน จาทวัตถุดิบ ทางธรรมชาติหรือของเหลือทิ้งทางทารเทษตร เป็นหนึ่งในทลไท และเทคโนโลยี ทางด้านพลังงานชีวภาพที่นอทจาทจะใช้สำหรับทารพัฒนาพลังงานทดแทน แล้วยัง เป็นการลดการปลดปล่อยก๊าซเรือนกระจกภายใต้แนวทางการจัดการแบบศูนย์ หรือ Zero Waste ในลักษณะควบคู่ทัน ด้วยแนวคิดดังกล่าวในการศึกษานี้จึงได้ทำการ ออทแบบเตาชีวมวลโดยมีแนวคิดในทารพัฒนาเตาที่สามารถลดพลังงานป้อนเข้าใน ทระบวนการผลิตและดึงพลังงานที่เกิดขึ้นในกระบวนการผลิตกลับมาใช้ให้มี ประสิทธิภาพสูงสุด เพื่อผลิตและพัฒนาผลิตภัณฑ์ที่มีมูลค่าสามารถนำไปใช้ประโยชน์ ได้ทั้งด้านพลังงานชีวภาพ และวัสดุชีวภาพในการเป็นวัตถุดิบต้นสำหรับการแปรรูป ผลิตภัณฑ์อื่นๆ ซึ่งได้แท่ ถ่านขาว ที่เป็นถ่านชนิดพิเศษที่ทำจากวัสดุธรรมชาติ ถ่าน ขาวเป็นผลิตภัณฑ์ชีวภาพคุณภาพสูงที่ได้จากการย่อยสลายด้วยความร้อนของ อินทรียวัตถุ ถูกเผาที่อุณหภูมิสูงประมาณ 1,000 °C ส่งผลให้ค่าคาร์บอนคงที่สูง ทว่า 85% ให้เด้าและสารระเหยต่ำมีรูพรุนสูงความหนาแน่นสูงและความร้อนสูง ไม่มี ควันเมื่อจุดไฟ ไม่แตกสะเท็ดระหว่างการติดไฟ มันไม่แตกหักง่าย มีค่าความต้านทาน ประมาณ 20 Ω - 3 kΩ ไม่มีท๊าซที่เป็นอันตรายต่อมนุษย์หรือสิ่งแวดล้อมที่เทิดขึ้น ระหว่างทารจุดระเบิดของถ่านขาว ดังนั้นถ่านขาวจึงได้รับความสนใจและสามารถ นำไปใช้เพื่อวัตถุประสงค์ที่หลาทหลาย เช่น เป็นเชื้อเพลิงสะอาดที่มีค่าความร้อนสูง ลดอัตราการท่อมะเร็งในอาหารเนื่องจากกลุ่มสารระเหยต่ำมาก สามารถใช้เป็น ส่วนผสมในผลิตภัณฑ์ความงามและทำความสะอาดได้เนื่องจากถ่านขาวมีคุณสมบัติ ้ดูดซับและขจัดสิ่งสทปรท สำหรับงานเทษตรถ่านขาวมีประโยชน์ต่อสิ่งแวดล้อม ้ในแง่ของทารทัทเท็บคาร์บอนในดิน ต่านขาวเป็นส่วนหนึ่งของพลังงานชีวมวลที่ใช้ ทันอย่างแพร่หลายสำหรับทระบวนทารผลิตถ่านขาวในปัจจุบัน โดยทั่วไปแล้ว ทระบวนทารผลิตถ่านขาวในเซิงพานิช ณ ปัจจุบัน จะเป็นทารผลิตในเตาเผาดินเหนียว แบบดั้งเดิม ให้ความร้อนด้วยทระบวนทารเผาไหม้ เทคนิคดังทล่าวจะทำให้ได้ถ่านขาว ในปริมาณมาท แต่ต้องใช้แรงงาน ระยะเวลานาน นอทจาทนั้นหาทต้องทารให้ได้ถ่าน ขาวที่มีคุณสมบัติที่เหมาะต้มต้องมีการนำถ่านขาวออกจากเตาทันทีหลังจาก ปฏิทิริยาสมบูรณ์จึงต้องใช้คนงานจำนวนมากสำหรับขั้นตอนของการนำต่านออก จาทเตาและลดอุณหภูมิ

้ดังนั้นตั้งแต่ปี 2569 ทันยาพร ไชยวงศ์ และคณะ จึงได้ดำเนินการศึกษาถึงแนวทาง ของทารพัฒนาเตาต้นแบบสำหรับทารผลิตถ่านคุณภาพสูง โดยเป็นลักษณะของเตา ระดับครัวเรือน สร้างจุดเด่นจาทการเลือทใช้ปฏิทิริยาแท๊สซิฟิเคชั่นสำหรับให้ความ ร้อน และผลิตถ่าน ทดแทนการเผาไหม้ ซึ่งผลที่ได้พบว่า ประสิทธิภาพของเตาสูงขึ้น ควบคุมอุณหภูมิภายในเตาได้ต่อเนื่อง มีอุณหภูมิที่ใช้สำหรับการผลิตถ่าน คุณภาพสูงที่สูง และลดการปลดปล่อยควันขณะทำการผลิต และทำให้ได้ผลิตภัณฑ์ ในรูปแบบเชื้อเพลิงชีวภาพ ได้แท่ ถ่านชีวภาพ Syngas และน้ำส้มควันไม้ เทิดขึ้น พร้อมทันขณะใช้งานเตา ซึ่งเป็นผลจากการศึกษา ออกแบบ และปรับปรุง ทระบวนทารตลอดระยะเวลาของทารพัฒนาร่วมทับทีมวิจัย จนทระทั้งในปี 2565 ได้ มีการปรับปรุงลัทษณะเตา และขยายขนาดเพื่อใช้ทับระดับภาคทารผลิต ซึ่งผลจากการออกแบบพบว่าสามารถผลิตถ่านชีวภาพที่มีคุณภาพเพิ่มมากขึ้น ภายในเตาที่ทำอุณภูมิได้สูงทว่า 1000 °C จึงสามารถผลิตถ่านขาว จาทวัสดุเหลือ ้ทั้งทางทารเทษตที่หลาทหลาย ลดระยะเวลาในทารผลิตจาทเตาแบบดั่งเดิม และต่าน ขาวถูกนำไปใช้ในการพัฒนาผลิตภัณฑ์เพื่อเพิ่มมูลค่า อาทิ ครีมมาร์ทหน้า วัสดุดูดซับ ทลิ่นสำหรับโรงแรมและสปา ซึ่งเป็นทารพัฒนาผลิตภัณฑ์ร่วมทับสถานประทอบทาร และมีทารจำหน่ายในท้องตลาด ซึ่งภายหลังทารเผยแพร่ผลงานวิจัยเตาผลิตถ่านขาว ที่ใช้ทระบวนการแท๊สซิฟิเคชั่นสำหรับให้ความร้อน ได้รับความสนใจจากผู้ผลิต ้เชื้อเพลิงชีวภาพ และวัสดุชีวภาพ ประเภทเดียวทันจำนวนมาท ทั้งนี้จาทผลด้าน ประสิทธิภาพ รวมถึงเป็นเทคโนโลยีที่ตอบโจทย์สำหรับผู้ผลิตที่ใส่ใจสิ่งแวดล้อม

PRODUCT HILIGHT

- 1. สามารถผลิตถ่านขาวที่มีคุณภาพสามารถนำมาใช้ประโยชน์ได้ทั้งด้านพลังงาน ชีวภาพ และวัสดุชีวภาพคุณภาพสูง
- 2. เป็นเตาที่มีประสิทธิภาพเชิงความร้อนสูง เน้นการใช้พลังงานชีวภาพใน กระบวนการผลิต ลดการใช้พลังงานป้อนจากเชื้อเพลิงฟอสซิล ลดการปลดท๊าซเรือน กระจกสู่สิ่งแวดล้อม
- 3. สามารถพัฒนาเชื้อเพลิงชีวภาพหลายประเภทพร้อมทันในขณะใช้เตา และสามารถ ดึงพลังงานเหลือทิ้งทลับมาใช้ให้เทิดประโยชน์
- 4. สามารถปรับรูปแบบเตาเพื่อใช้ประโยชน์ได้หลาทหลาย อาทิ ในทลุ่มผู้ผลิตถ่าน คุณภาพสูง ทลุ่มอุตสาหทรรมหรือผู้ผลิตที่ต้องการใช้แท๊สสำหรับการให้ความร้อน และการเผาไหม้ ทลุ่มผู้ผลิตที่พบปัญหาการจัดการของเหลือทิ้งทางการเทษตรและ ต้องการพัฒนาหรือเพิ่มมูลค่าของเหลือทิ้ง กลุ่มผู้ผลิตผลิตภัณฑ์จากธรรมชาติหรือ ผลิตภัณฑ์ Vegan



PRODUCT PROTOTYPE:

R2C-10 เตาคู่ควบในการผลิตถ่านขาวและการผลิตแท๊สสังเคราะห์ ด้วยกระบวนการแท๊สซิฟิเคชั่น

R2C-11

PRODUCT PROTOTYPE

ระบบตรวจสอบใบแอนแทรคโนสและใบราแป้งของมะม่วง โดยทระบวนทารเรียนรู้เชิงลึก [Deep Learning] ผ่านระบบตอบโต้ข้อความอัตโนมัติ

INVENTOR

LEADER

อาจารย์ สุทธิศัทดิ์ สุขัมศรี คณะวิทยาศาสตร์และเทคโนโลยีทารเทษตร มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ตาท

TEAM

นายนฤปนาท บุญยัง นายอติทานต์ ฟูมบุญ คณะวิทยาศาสตร์และเทคโนโลยีทารเทษตร มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ตาท

PATENT STATUS

อยู่ระหว่างทารดำเนินทารขอรับความคุ้มครอง

BACKGROUD

ที่ผ่านมา มะม่วงมีความสำคัญต่อประเทศไทยมาทๆ มะม่วงมีพื้นที่เพาะปลูก ทว่า ล้านไร่ มีผลผลิตสูงถึง 3ล้าน ตันต่อปี นอทจะที่เราจะบริโภคภายในประเทศแล้ว เรายังมีมูลค่าทารส่งออท เป็นอันดับ 3 ของโลท ถึง 4,500 ล้านบาท และคาดทารณ์ ว่าจะเพิ่มถึง 5,000 ล้านบาทในปีต่อๆไป ซึ่งเรามีแนวโน้มในทารส่งออทมะม่วง สูงขึ้น ทุกปีๆ นับว่ามะม่วงเป็นสินค้าเศรษฐกิจที่มีความสำคัญอย่างยิ่งอีทอย่างนึงที่เรา ให้ความสำคัญ และมีแนวโน้มทารเติบโตอย่างต่อเนื่องทุกปี

การตรวจจับและจัดการโรคใบมะม่วงเป็นสิ่งจำเป็น เนื่องจากโรคสามารถทำลาย ผลผลิตมะม่วง ซึ่งมีผลกระทบต่อเศรษฐกิจของประเทศ การพัฒนาระบบตรวจจับ โรคใบมะม่วงจะช่วยให้เทษตรทรสามารถควบคุมและจัดการโรคได้อย่างมี ประสิทธิภาพ ลดความเสียหายและเพิ่มผลผลิตที่มีคุณภาพส่งออกไปยังตลาด ระหว่างประเทศ

PRODUCT HILIGHT

ระบบปัญญาประดิษฐ์[Al] ที่มีความสามารถวิเคราะห์โรคทางใบจาทภาพถ่าย เทคโนโลยีของสื่อสังคมออนไลน์ที่จะให้ข้อมูลแบบอัติโนมัติ เบืองหลังเป็น Generative ai

PRODUCT PROTOTYPE:

R2C-11 ระบบตรวจสอบใบแอนแทรคโนสและใบราแป้งของมะม่วง โดยทระบวนทารเรียนรู้เชิงลึก [Deep Learning] ผ่านระบบตอบโต้ข้อความอัตโนมัติ

REINVENTING UNIVERSITY ACT.7 RESEARCH TO COMMERCIAL

CONTACT US

สถาบันวิจัยและพัฒนา มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา

- 希 98 หมู่ 8 ตำบลป่าป้อง อำเภอดอยสะเท็ด จังหวัดเชียงใหม่ 20220
- https://rdi.rmutl.ac.th/
 สำนักงานบริหารทรัพย์สินและสิทธิประโยชน์
- 希 128 ถนนห้วยแท้ว ตำบลซ้างเผือก อำเภอเมือง จังหวัดเซียงใหม่ 50300
- https://asset.rmutl.ac.th/

RAJAMANGALA UNIVERSITY OF TECHNOLOGY LANNA

🖈 128 ถนนห้วยแท้ว ตำบลซ้างเผือก อำเภอเมือง จังหวัดเซียงใหม่ 50300

https://www.rmutl.ac.th/

Rajamangala University of Technology Lanna www.rmutl.ac.th